NRG Petten Benchmark Calculations with ENDF/B-VII.0

-- a summary for the Nov 2006 CSEWG meeting

All numbers and figures in this summary are based on the work of Steven C. van der Marck.

His work is to be published in Nuclear Data Sheets.

NRG Petten Benchmark Calculations with ENDF/B-VII.0

- Analysis of ~730 ICSBEP benchmarks, shielding analyses, and β_{eff} calculations.
- The Petten work represents the largest single contribution to the ENDF validation effort.

Provided full set of results (632 crits) based on the β1 libraries.

- Valuable early feedback including a list of evaluations with processing problems.
- Valuable early confirmation of extensive LANL results.
- Provided even more extensive sets of results (730 crits) based on β3 libraries.

Results for the HEU benchmarks with a fast or intermediate spectrum

Results for the HEU benchmarks with a thermal spectrum

Results for the IEU benchmarks with a fast or intermediate spectrum

Results for the IEU benchmarks with a thermal spectrum

Results for the LEU benchmarks with a thermal spectrum

Results for the LEU benchmarks with a thermal spectrum (continued)

Results for the LEU benchmarks with a thermal spectrum (continued)

Results for the PU benchmarks with a fast, intermediate, or mixed spectrum

Results for the PU benchmarks with a thermal spectrum

Results for the MIX benchmarks with a fast spectrum

Results for the MIX benchmarks with a thermal spectrum

Results for the U233 benchmarks with a fast spectrum

Results for the U233 benchmarks with a thermal spectrum

The number of benchmarks per main ICSBEP category for thermal/intermediate/fast/mixed neutron spectrum

		COM	Р			ME'	Г		SOL	total
	therm	/ inter $/$	fast $/$	mixed	therm $/$	inter	/ fast /	mixed	\mathbf{therm}	
LEU	257 ,	/ /	/		1 /		/ /		49	307
IEU	6,	/ 4/	/		/		/ 16 /			26
HEU		/ 6/	/	1	41 /	5	/ 66 /	5	87	211
MIX	34	/ /	1 /		/		/ 4/		10	49
PU		/ 1/	1		1	1	7/	6	105	120
U233	8 /	/ /	1		/		/ 4/		5	17
total	305	/ 11 /	1 /	1	42 /	6	/ 97 /	11	256	730
I				I					I	I

The average values for C/E –1 (in pcm) for ENDF/B-VI.8 per main ICSBEP benchmark category

	COMP	\mathbf{MET}	SOL
	therm / inter / fast / mixed	therm / inter / fast / mixed	therm
LEU	-452 / / /	-270 / / /	107
IEU	-299 / -238 / /	/ / 712 /	
HEU	/ 1442 $/$ $/$ -273	-411 / -42 / 186 / 462	142
MIX	377 / / 978 /	/ / 69 /	-257
PU	/ 967 / /	/ 4654 / 375 / 745	531
U233	-380 / / /	/ / -338 /	-292

The average values for C/E –1 (in pcm) for ENDF/B-VII.0 (beta3) per main ICSBEP benchmark category

	COMP	MET	SOL
	therm / inter / fast / mixed	therm / inter / fast / mixed	therm
LEU	17 / / /	-41 / / /	123
IEU	103 / 219 / /	/ / 182 /	
HEU	/ 1744 / / 104	-51 / 88 / 147 / 812	108
MIX	428 / / 110 /	/ / 193 /	-254
PU	/ 1110 / /	/ 4565 / 229 / 936	620
U233	146 / / /	/ / -364 /	66

The shift in the average values for C/E –1 (in pcm) going from ENDF/B-VI.8 to ENDF/B-VII.0 (beta3) per main ICSBEP benchmark category

	COMP	MET	SOL
	therm / inter / fast / mixed	therm / inter / fast / mixed	therm
LEU	469 / / /	229 / / /	16
IEU	402 / 457 / /	/ / -530 /	
HEU	/ 302 / / 377	360 / 130 / -39 / 350	-34
MIX	51 / / -868 /	/ / 124 /	3
PU	/ 143 / /	/ -89 $/$ -146 $/$ 191	89
U233	526 / / /	/ / -26 /	358

Shielding Benchmarks

Oktavian

- Measured leakage current spectrum from D-T source through spherical piles of AI, Co, Cr, Cu, LiF, Mo, Mn, Si, Ti, W, Zr
- Fusion Neurtonics Source (FNS)
 - Measured leakage current spectrum from D-T source through slabs of Be, C, N, O, Fe, Pb

LLNL Pulsed Spheres

- Measured leakage current spectrum from D-T source through spheres of ⁶Li, ⁷Li, Be, C, N, O, Mg, AI, Ti, Fe, Pb, D₂O, H₂O, Concrete, Polyethylene, Teflon
- NIST Water Spheres
 - Cf source at center of H₂O sphere

Neutron spectrum for the FNS, Pb, d=20cm benchmark at 12.2° angle

Neutron spectrum for the LLNL Pulsed Sphere, Pb (1.4 mfp) benchmark, angle=39°

Shielding Results Summary

Generally changes are small between VI.8 and VII.0 data.

- Significant changes for:
 - Mg (worse)
 - Zr (much better)
 - Mo (better)
 - Ti (slightly better above 1 MeV; slightly worse below 1 MeV)
 - Pb (small improvements)

C/E for β_{eff} for many benchmark systems. The systems are roughly ordered with respect to the average energy at which fission takes place, from low energy (left) to high (right)

The experimental and calculated β_{eff} (in pcm). The uncertainty for C/E includes only the statistical uncertainty of the calculation.

	Experiment	Calcu	lation	C/E
		ENDF/B-VI.8	ENDF/B-VII.0	ENDF/B-VII.0
TCA	771 ± 17	812±9	769.2 ± 1.3	$0.998 {\pm} 0.002$
IPEN	742 ± 7	782 ± 4	$747.6 {\pm} 4.0$	1.008 ± 0.005
$Masurca_R2$	721 ± 11	746 ± 7	$729.3 {\pm} 6.9$	1.012 ± 0.009
Masurca_Z2	349 ± 6	343 ± 5	339.5 ± 4.5	$0.973 {\pm} 0.013$
FCA-XIX-1	742 ± 24	746 ± 8	$732.4 {\pm} 7.5$	$0.987 {\pm} 0.010$
FCA-XIX-2	364 ± 9	365 ± 5	$367.6 {\pm} 4.8$	$1.010 {\pm} 0.013$
FCA-XIX-3	251 ± 4	255 ± 4	246.2 ± 4.1	$0.981 {\pm} 0.017$
Sneak-9C1	758 ± 24	741 ± 7	739.2 ± 7.0	$0.975 {\pm} 0.009$
Sneak-7A	395 ± 12	368 ± 5	$361.6 {\pm} 4.7$	$0.915 {\pm} 0.013$
Sneak-7B	429 ± 13	421 ± 5	$416.0 {\pm} 4.9$	$0.970 {\pm} 0.012$
Sneak-9C2	426 ± 19	388 ± 5	376.4 ± 4.8	$0.884 {\pm} 0.013$
Zpr-Heu	667 ± 15	692 ± 9	$689.3 {\pm} 8.9$	$1.033 {\pm} 0.013$
Zpr-U9	725 ± 17	732 ± 8	$714.9 {\pm} 8.0$	$0.986 {\pm} 0.011$
Zpr-Mox	381 ± 9	363 ± 6	367.0 ± 5.1	$0.963 {\pm} 0.014$
Zpr-Pu	222 ± 5	223 ± 5	$236.9 {\pm} 5.2$	$1.067 {\pm} 0.022$
Godiva	659 ± 10	670 ± 8	$668.7 {\pm} 4.0$	$1.015 {\pm} 0.006$
Topsy	665 ± 13	640 ± 8	643.2 ± 3.8	$0.967 {\pm} 0.006$
Jezebel	194 ± 10	187 ± 5	$197.3 {\pm} 2.1$	$1.017 {\pm} 0.011$
Popsy	276 ± 7	278 ± 5	266.4 ± 2.4	$0.965 {\pm} 0.009$
Skidoo	$290 {\pm} 10$	313 ± 6	312.1 ± 2.7	$1.076 {\pm} 0.009$
Flattop-23	360 ± 9	359 ± 6	$356.9 {\pm} 2.8$	$0.991 {\pm} 0.008$

The experimental and calculated α (in s⁻¹). The uncertainty for C/E includes only the statistical uncertainty of the calculation.

	Experiment	Calculation		C/E
		ENDF/B-VI.8	ENDF/B-VII.0	ENDF/B-VII.0
Proteus	$3.60 {\pm} 0.02$	$3.78 {\pm} 0.07$	3.61 ± 0.03	$1.003 {\pm} 0.008$
SHE-8	$6.53 {\pm} 0.34$	6.22 ± 0.07	5.99 ± 0.15	$0.917 {\pm} 0.025$
Sheba-II	200.3 ± 3.6	$204.3 {\pm} 4.3$	199.73 ± 1.39	$0.997 {\pm} 0.007$
Stacy-029	122.7 ± 4.1	$124.4 {\pm} 2.6$	$116.88 {\pm} 0.75$	$0.953 {\pm} 0.006$
Stacy-033	116.7 ± 3.9	118.5 ± 2.5	111.99 ± 0.71	$0.960 {\pm} 0.006$
Stacy-046	106.2 ± 3.7	107.5 ± 2.2	102.87 ± 0.64	$0.969 {\pm} 0.006$
Stacy-030	$126.8 {\pm} 2.9$	$133.8 {\pm} 2.7$	$125.47 {\pm} 0.81$	$0.990 {\pm} 0.006$
Stacy-125	$152.8 {\pm} 2.6$	159.5 ± 3.3	152.06 ± 0.99	$0.995 {\pm} 0.007$
Stacy-215	109.2 ± 1.8	115.6 ± 2.3	108.11 ± 0.68	$0.990 {\pm} 0.006$
Winco	$1109.3 {\pm} 0.3$	$1166. \pm 13.$	1111.24 ± 5.54	$1.002 {\pm} 0.005$
BigTen	$(1.17 \pm 0.01) \times 10^5$	$(1.19\pm0.01)\times10^5$	$(1.11\pm0.01)\times10^5$	$0.952{\pm}0.008$

β_{eff} Results Summary

- Very nice improvement for the 2 low-enriched thermal values versus VI.8
- Generally small changes for the fast U, Pu and mixed assemblies versus VI.8 with some small improvements and some slightly worse agreement
- Very little change for the U-233 systems

A Few Summary Comments

- We have utilized the "agreement" of many benchmark calculations to define the "quality" of our evaluations; now is the time to go back and drill down on the "discrepant" values and try to determine sources of the biases.
- It would be ideal to analyze a rather complete and diverse set of benchmarks using sensitivity/uncertainty methods. This would help identify "discrepant" *differential* and *integral data*. This is becoming more realizable (new covariance data, new computer capabilities, new incentives, …)
- We have benefited greatly from the Petten (van der Marck) contribution to ENDF; we will also benefit (ourselves and others) by running our "validation suites" with new versions of JEFF, JENDL, ... as they become available.